Monatshefte für Chemie 99, 230-243 (1968)

Zur Ermittlung und rechnerischen Überprüfung thermodynamischer Daten aus experimentell gefundenen Werten, 9. Mitt.¹:

Ein transformierter dreiparametriger Margules-Ansatz für binäre thermodynamische Systeme*

Von

F. Gölles und A. Höpfner

Aus dem Institut für Pharmakognosie der Universität Graz und aus dem Physikalisch-Chemischen Institut der Universität Heidelberg

Mit 5 Abbildungen

(Eingegangen am 8. September 1967)

In der 8. Mitt. dieser Reihe¹ wurde gezeigt, daß bei der Auswertung experimenteller Dampfdruckdaten der *Redlich*— *Kister*-Ansatz dem älteren *Margules*schen Ansatz mit zwei Parametern überlegen ist. Nun soll dargelegt werden, daß der *Margules*-Ansatz in der von *Musil* und *Breitenhuber*² vorgeschlagenen und jetzt auf drei Parameter erweiterten Form bei Verwendung einer modernen elektronischen Rechenanlage ebenfalls in der Lage ist, auch stärker asymmetrische Systeme richtig wiederzugeben, und die Totaldrucke exakt und mit sehr kleinen Fehlern, die durchwegs in der Größenordnung der Versuchsfehler liegen, in die Partialdrucke zu zerlegen.

Zur Untersuchung wurden die von Wolff und $H\ddot{o}pfner^3$ gemessenen Systeme deuterierter Amine mit n-Hexan und n-Butan heran-

^{*} Hans Lieb in dankbarem Gedenken zur Vollendung des 80. Lebensjahres gewidmet.

¹ 1.—6. Mitt.: F. Gölles, Mh. Chem. 92, 981 (1961); 93, 191, 201 (1962); 94, 1108 (1963); 95, 1656 (1964); 96, 1366 (1965); 7. und 8. Mitt.: F. Gölles und A. Höpfner, Mh. Chem. 97, 368, 911 (1966).

² A. Musil und L. Breitenhuber, Allgem. Wärmetechn. 5, 103 (1954).

³ H. Wolff und A. Höpfner, Ber. Bunsenges. physik. Chemie 69, 710 (1965).

gezogen. Die von Zawidski⁴ gemessenen Systeme Aceton/CHCl₃ und Aceton/CS₂ wurden ebenfalls kritisch betrachtet und die Überlegenheit der dreiparametrigen gegenüber der zweiparametrigen Rechnung dargetan. Partialdrucke, Aktivitätskoeffizienten, die molare Zusatzenthalpie G^E sowie die Funktion $G^E/x_1 \cdot x_2$ werden in einem Programm errechnet.*

Der herangezogene Apparat der Ausgleichsrechnung läßt eine sachgemäße Beurteilung des verwendeten Rechenverfahrens zu. Die Programmierung erfolgte in der Programmiersprache FORTRAN, gerechnet wurde mit der UNIVAC-490-Computeranlage des Grazer Rechenzentrums.

In the last publication it was shown that in evaluating experimental vapor pressure data the *Redlich—Kister* statement proves superior to the older *Margules* statement. *Musil* and *Breitenhuber* suggested this older statement and we extended it to three parameters. Now it will be shown that this extension, when a modern electronic computer is employed, is able to represent more asymmetrical non-ideal systems correctly and to break down the total pressures exactly and with minimal errors in the partial pressures. The errors are throughout in the order of magnitude of the experimental errors.

The systems Acetone/CS₂, Acetone/CHCl₃ as well as the systems measured by *Wolff* and *Höpjner* (deuterated amines with *n*-hexane and *n*-butane) were subjected to this investigation. Partial pressures, activity coefficients, the excess enthalpy G^E and the function $G^E/x_1 \cdot x_2$ are calculated with one programme.

The apparatus used for the fitting permits a relevant judgement of the calculating method employed. The programme is written in FORTRAN on the UNIVAC-490-computer of the Graz Computer Centre.

In der 8. Mitt. dieser Reihe¹ wurde dargelegt, daß bei der Darstellung der Aktivitätskoeffizienten binärer Mischungen nach dem *Margules*-Ansatz, gemäß

$$\ln f_1 = \sum_{\nu=2}^{\infty} a_{\nu} \cdot x_{2,\nu} \text{ und } \ln f_2 = \sum_{\nu=2}^{\infty} b_{\gamma} \cdot x_{1,\nu}$$
(1)

und bei Verwendung der Methode der kleinsten Quadrate die Koeffizienten a_{ν} und b_{ν} unverhältnismäßig große Werte annehmen können. Die Umordnung nach *Redlich—Kister*⁵ (*RK*-Ansatz) ermöglichte es, diese Schwierigkeiten zu vermeiden. Einen gänzlich anderen Weg hat *Musil*⁶ eingeschlagen, um die thermodynamischen Funktionen in einer Potenzreihe zu entwickeln. Sein Ansatz — im folgenden kurz *MB*-Ansatz genannt — führt die Aktivitäten der Bestandteile von Zweistoffsystemen

^{*} Interessenten steht das Programm auf Anfrage zur Verfügung.

⁴ J. Zawidski, Z. physik. Chem. 35, 129 (1900).

⁵ O. Redlich und A. T. Kister, Ind. Engng. Chem. 40, 345 (1948).

⁶ A. Musil, Acta Physica Austr. 3, 111 (1949).

bei konstanter Temperatur auf die Grenzwerte f_{01} und f_{02} des Henryschen Gesetzes für den jeweils verdünnt gelösten Bestandteil zurück. Der Autor hat für viele Systeme — insbesondere für die "klassischen" Systeme von Zawidski (l. c.; Aceton mit CS₂ bzw. CHCl₃) — die Verwendbarkeit eines nur zweiparametrigen Ansatzes unter Errechnung der höchstens zweiten Näherung eindrucksvoll demonstriert, wobei er kein anderes Hilfsmittel als einen Rechenschieber verwendete.

So beschen erscheint es klar, daß vor der Einsatzmöglichkeit moderner elektronischer Rechenanlagen die jeweiligen Autoren bestrebt waren, mit möglichst wenig Hilfsmitteln größtmögliche Genauigkeit zu erzielen.

Es soll nun untersucht werden, ob der Ansatz MB bei Erweiterung seiner Parameterzahl auf drei nicht mindestens ebenso leistungsfähig ist wie der Ansatz von *Redlich—Kister* und ob nicht im Hinblick auf die speziellen Eigenschaften der UNIVAC-490-Anlage seine Anwendung gewisse Vorteile bietet.

Nach Durchrechnung dreier Systeme, deren experimentelle Daten von Wolff und Höpfner³ gemessen worden sind, und nach erstmaliger dreiparametriger Durchrechnung der beiden obgenannten Zawidski-Systeme (l. c.) kann man die Frage bejahen.

Musil und Breitenhuber, denen, wie gesagt, keine elektronische Rechenanlage zur Verfügung stand, zeichneten zunächst die Totaldruckkurven und interpolierten die "glatten" Funktionswerte bei x = 0,1, 0,2 usw. Hiedurch war aber von den unmittelbar gemessenen Werten abgegangen worden und man kann — streng genommen — nicht mehr vom "Ausgleich vermittelnder Beobachtungen" sprechen. Die Frage "zwei- oder dreiparametrige Rechnung" läßt sich so nicht eindeutig beantworten⁷. Zur Kennzeichnung von Dampfdruckisothermen sollten mindestens 20 Meßpunkte vorliegen, damit diesen Meßpunkten bei der Auswertung kein allzu großes statistisches Gewicht beigelegt wird.

Der Ansatz *MB* verwendet zur Bestimmung seiner Konstanten die natürlichen Logarithmen der Grenzaktivitätskoeffizienten. Es galt daher, zuerst eine Bestimmungsmethode für diese Größen zu finden. Der von *Musil* und *Breitenhuber* verwendete Differenzenspiegel wurde durch ein Verfahren zur Ableitung von Polynomen ersetzt. Dieses Verfahren hat das Vorhandensein äquidistanter Funktionswerte nicht zur Voraussetzung.

Die Wertepaare $P_i = f(x_2)$ lassen sich in den Randgebieten also von etwa $x_2 = 0.0$ bis 0.3 und 0.7 bis 1.0 durch Parabeln höherer Ordnung annähern. Eine solche Parabel ist von der Form

$$P_{j} = P_{0} + a_{1} \cdot x_{i, j} + a_{2} \cdot x_{i, j}^{2} + \dots + a_{n} \cdot x_{i, j}^{n}$$
(2)

(i = 1, 2; j = 1, n)

⁷ A. Musil und L. Breitenhuber, Z. Elektrochem. 56, 995 (1952).

Gesucht sind die Werte der Konstanten a_k (k = 1, n), wobei die $x_{i,j}$ durch das Experiment vorgegeben sind.

Bildet man aus obiger Gleichung für die P_j die Ableitung an der Stelle $x_2 = 0$, so wird

$$P'_{(0)} = a_1$$
 (2a)

Die gesuchte Konstante a_1 ist die erste der drei Unbekannten des Gleichungssystems

$$\begin{pmatrix} x_1 & x_1^2 & x_1^3 \\ x_2 & x_2^2 & x_3^2 \\ x_3 & x_3^2 & x_3^2 \end{pmatrix} \quad \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} P_1 - P_0 \\ P_2 - P_0 \\ P_3 - P_0 \end{pmatrix},$$
(2 b)

wenn wir uns auf eine Parabel dritter Ordnung, die für den geforderten Zweck stets ausreicht, beschränken. Dieselbe Gesetzmäßigkeit gilt für die zweite Grenze des Konzentrationsbereiches. Die Auflösung des Gleichungssystems (2 b) erfolgt im Computer mit Hilfe des normalen *Gauss*schen Algorithmus, wobei nur die Unbekannte a_1 interessiert.

Nun werden die Parameter der ersten Näherung festgelegt.

$$Y 1 = \ln \frac{P(n) + P'(n)}{P(1)} \quad \text{und} \quad Y 2 = \ln \frac{P(1) + P'(1)}{P(n)}$$
(3)

Der Asymmetrie des Systems wird durch Einführung des Parameters Y3 Rechnung getragen:

$$Y3 = Y1 - Y2 \tag{4}$$

Für Systeme mit Dampfdruckminimum sowie für Systeme, bei denen die Grenzsteigung an der einen Grenze nahezu 90° beträgt $[P'_{(0)} = \infty]$ lassen sich Y1 und Y2 nicht nach (3) bestimmen. Das Gleiche gilt, wenn $P'_{(0)}$ an einer oder an beiden Grenzen negativ und > P(n) bzw. > P(1)wird.

In solchen Fällen erfolgt die Konstantenbestimmung aus dem azeotropen Punkt, für welchen gilt⁸:

$$f_2(az) = \frac{P(az)}{p_{02}}$$
 und $f_1(az) = \frac{P(az)}{p_{01}}$ (5)

Die Aktivitätskoeffizienten schreiben sich unter Transformation der Molenbrüche:

$$\ln f_2 = Y1 \cdot A1 + Y2 \cdot A2 + Y3 \cdot A3 + \text{Realgaskorrektur} \\ \ln f_1 = Y1 \cdot B1 + Y2 \cdot B2 + Y3 \cdot B3 + \text{Realgaskorrektur.}$$
(6)

⁸ F. Huditz, Z. Elektrochem. 56, 155 (1952).

Die A und B sind Interpolationsfunktionen und lauten, ausführlich angeschrieben $(j = 1, n \dots Zahl der Meßpunkte)$

$$A 1 (j) = 2 = x_1^2 (j) \cdot x_2 (j)$$

$$B 1 (j) = x_2^2 (j) \cdot [1 - 2 \cdot x_1 (j)]$$

$$A 2 (j) = x_1^2 (j) \cdot [1 - 2 \cdot x_2 (j)]$$

$$B 2 (j) = 2 \cdot x_2^2 (j) \cdot x_1 (j)$$

$$A 3 (j) = x_1^2 (j) \cdot x_2 (j) \cdot [3 \cdot x_2 (j) - 2]$$

$$B 3 (j) = x_2^2 (j) \cdot x_1 (j) \cdot [1 - 3 \cdot x_2 (j)]$$

Die Realgaskorrekturen wurden unter Zuhilfenahme des zweiten Virialkoeffizienten nach der vereinfachten Gleichung von Scatchard und Raymond⁹

Realgaskorrektur =
$$\frac{(V_i - B_{ii}) \cdot (P - p_{oi})}{R \cdot T}$$
(8)

 $V_i \ldots$ Molvolumina, $B_{ii} \ldots 2$. Virialkoeffizient der reinen Gase, $p \ldots$ Reindampfdrucke, $P \ldots$ Totaldruck)

errechnet. Falls die B_{ii} nicht aus Literaturwerten zur Verfügung standen, wurden sie, wie im Falle der Systeme mit Aceton, aus den kritischen Daten mit Hilfe der *Redlich*schen Gleichung¹⁰ bestimmt.

In erster Näherung ergeben sich so der Totaldruck und die Partialdrucke. Es gilt

$$P = p_{02} \cdot x_2 \cdot \exp(\ln f_2) + p_{01} \cdot x_1 \cdot \exp(\ln f_1)$$

$$x_1 = 1 - x_2, \qquad l = P(ber) - P(exp)$$
(9)

Da die erste Näherung nicht ausreicht, wurden an den Parametern Korrekturen so angebracht, daß die Summe der Quadrate der Abweichungen in den Totaldrucken zum Minimum wird. Diese Forderung führt bei Entwicklung nach den Verbesserungen ξ , η und ζ zu linearen Gleichungen für diese.

Die Ableitungen des Totaldruckes nach den Parametern Y(i) (i = 1, 3)ergeben

$$\alpha_i = \frac{\partial P}{\partial Y(i)} \tag{10}$$

wobei für die ai nachstehende Ausdrücke gefunden werden

$$lpha_1 = p_2 \cdot A1 + p_1 \cdot B1$$

 $lpha_2 = p_2 \cdot A2 + p_1 \cdot B2$ (10a)
 $lpha_3 = p_3 \cdot A3 + p_1 \cdot B3.$

⁹ G. Scatchard und C. L. Raymond, J. Amer. Chem. Soc. 60, 1278 (1938).

¹⁰ O. Redlich und J. N. S. Kwong, Chem. Rev. 44, 233 (1949).

ater. Methylamin, gemessen von $Wolff$ und $H \ddot{o}pfmer$ (l. c.), zwei- und dr dem modifizierten MB -Ansatz. Die Realgaskorrekturen sind berücksic hnung wurde außerdem auch ohne Realgaskorrektur durchgeführt (dic eweils ersten Zeile). Die Grenzaktivitätskoeffizienten werden mit d BedlichKister-Ansatz erhaltenen Werten (RK) verglichen. 5 Isothermmit ieweils 29 Meßnunkten
--

	$+ 20^{\circ}$	00	-20°	-	-40°		55°
	2-par. 3-par.	2-par. 3-par.	2-par. 3-par	. 2-par.	3-par.	2-par.	3-par.
Y_1	- 1,8892	2,1443	2,438;		2,7783		3.1451
	1,6743 $1,8282$	1,9172 $2,1359$	2,0994 $2,4380$	2,2278	2,7776	2,3061	3,1449
Y2	1,3329		2,0991		2,5310	[2,9053
	1,2465 $1,3585$	1,5647 $1,7008$	2,2922 $2,0979$	2,2922	2,5268	2,5988	2,9038
Y_3	0,5564	0,7429	1,061	Market A	1,6133		2,3286
	0,5458	0,7297	1,060(1,6074		2,3256
[aa]	-1620	- 446,8	- 51,9		4,242		3.809
	11 650 2058	4927 535,4	1814 52,6	521	4,422	173	3,776
m_0		4,145	1,413		0,404	And a second	0,383
	20,8 8,896	13,5 4,538	8,2 $1,423$	4,4	0,412	2,5	0,381
m_{ξ}	0,014	0,016	0,013	i	0,011	-	0,026
	0,019 $0,016$	0,025 $0,017$	0,035 $0,013$	0,056	0,011	0,085	0,026
m_η	0,011	0,011	0,008		0,005	1	0,012
	0,019 $0,013$	0,023 $0,012$	0,029 $0,008$	0,039	0,005	0,053	0,011
m_{ζ}	0,044	- 0,046	0,035	81. ANNE	0,028		0,066
	0,049	0,050	0,035		0,029		0,066
$\lim \ln f_2$	1,4042	1,7265	2,0396		2.5310	-	2,9053
$x_2 ightarrow 0$	1,3084 $1,4205$	1,6001 1,7363	1,9229 2,0997	2,2995	2,5341	2,6021	2,9071
	RK: 1,5119	RK: 1,7884	RK: 2,1128	RK:	2,5423	RK:	2,9232
$\lim \ln f_1$	1,8504	2,1443	2,4326	Į	2,7556		3.1354
$s_1 \neq 0$	1,4779 1,6319	1,8069 $2,0256$	2,0940 $2,4382$	2,2059	2,7782	2,2964	3,1451
	RK: 1,6756	RK: 2,0446	RK: 2,4376	RK:	2,7570	RK:	3,1924

H. 1/1968] Überprüfung thermodynamischer Daten

Wir schreiben statt α_1 , α_2 und α_3 zur Vereinfachung *a*, *b* und *c* und erhalten so das nachstehende Schema¹¹, das zur gleichzeitigen Auflösung von Normal- und Gewichtsgleichungen benötigt wird.

ξ	η	ζ	l	Q_{ξ}	Q_η	Q_{ζ}	
[aa]	[ab]	[ac]	-[al]	—1	0	0	
	[bb]	[bc]	[bl]	0	1	0	(11)
		[cc]	-[cl]	0	0	1	(11)
			-[<i>ll</i>]	0	0	0	

Tabelle 2. Konstanten zur Berechnung der Aktivitätskoeffizienten nach Gl. (5)

t,° C	Y1	Y2	Y3
	a) <i>n</i> -Butan/de	euter. Äthylamin	
+ 20	1,1247	1,3602	0,2556
. 0	1,2865	1,5594	0,4238
-20	1,4662	1,7959	0,5982
40	1,6637	2,0902	0,8586
55	1,8009	2,2870	1,0219
	b) n -Hexan/d	euter. Äthylamin	
+ 20	1,2841	1,1217	0,2927
. 0	1,4665	1,3694	0,3699
20	1,6884	1,6770	0,5949
40	1,8449	1,9957	0,7693

Werte der Margulesschen Interpolationsfunktionen A(x) und B(x) für glatte Werte von x_2 .

x2	A_1	A_2	A_3	B_1	B_2	B_{3}
0,0	0	1	0	0	0	0
0,1	0,162	0,648	-0,1377	0,008	0,018	0,0063
0,2	0,256	0,384	-0,1792	-0,024	0,064	0,0128
0,3	0,294	0,196	0,1617	0,036	0,126	0,0063
0,4	0,288	0,072	0,1152	-0,032	0,192	-0,0192
0,5	0,250	0,000	-0,0625		0,250	0,0625
0,6	0,192	0,032	- 0,0192	+ 0,072	0,288	-0,1152
0,7	0,126	0,036	0,0063	0,196	0,294	0,1617
0,8	0,064	-0,024	0,0128	0,384	0,256	0,1792
0,9	0,018	0,008	0,0063	0,648	0,162	-0,1377
1,0	0	0	0	1	0	0

¹¹ O. v. Gruber, Z. Verm. wesen 1925, 133.

Abb. 1. Fehlerverteilung in Prozenten l_i beim System *n*-Hexan/deuter. Methylamin, Rechnung nach *Redlich*—*Kister* (3-par.) und nach *Musil*— *Breitenhuber* (2-parametrig), Versuchstemp. + 20 ° C

Abb. 2. Fehlerverteilung desselben Systems wie in Abb. 1, Versuchstemp. $-55\,^{\circ}\mathrm{C}$

Tabelle : dem Aı	3. Näherur nsatz <i>MB</i>	ıgen und F im sehr v	ehler der d erd. Bereic]	urchgeführter h für einige c	a Annäherun ler untersuc	g bei drei hten Tem	parametri peraturen	$ger Rechn.$ $l_i = P(ber$	ung nach $-P(\exp)$
a) Syster	m n-Hexan/	deuter. Äthyl	lamin						
t, °C	x_2	$P\left(\exp\right)$	$P\left(\mathrm{ber} ight)$	l_i	$t \circ C$	x_2	$P\left(\exp\right)$	$P (\mathrm{ber})$	l_i
-40	0,0176	8,0 14.0	7,915	0,085	-20	0,0176	25,0	25,247	0,247
	0,0451	11,0 12,9	12,783	0,200 0,117		0,0329 0.0451	33,0 38,9	33,229 38.913	0.229 0.013
	0,0891	18, 2	18,025	-0,175		0,0891	55,1	55,024	-0.076
0	0,0176	61,9	68,510	0,610	+ 20	0,0176	162,4	163,553	1,153
	0,0329	85,5	86,134	0,634		0,0392	196,0	197,453	1,453
	0,0451	98,6	99,095	0,495		0,0451	221,4	222,883	1,483
•	0,0891	138, 3	138,081	0,219		0,0891	301,9	302, 333	0,433
b) Syste	m n -Butan/o	deuter. Äthyl	amin						
— 55	0,0102	52,9	52,632	0,268	40	0,0102	126.5	126.415	0.085
	0,0242	53,6	53,187	0,413		0,0242	128,4	127,948	0.542
	0,0463	53,7	53,757	+ 0,057		0,0463	130,1	129,632	-0,468
	0,0646	54, 1	54,023	0,077		0,0646	131,2	130,519	0,681
-20	0,0102	341,7	342, 218	0,518	0	0,0102	780,0	780,817	0,817
	0,0242	346,0	346, 420	0,420		0,0242	788,8	790, 308	1,508
	0,0463	351,0	351,377	0,377		0,0463	800,5	802,038	1,538
	0,0646	354,9	354, 248	0,652		0,0646	808,0	809, 341	1,341
+ 20	0,0102	1566,5	1568, 416	1,916					
	0,0242	1583,5	1586, 227	2,728 9,900					
	0,0646	1621,4	1009, 808 1625, 257	3,208 3,857					

238

F. Gölles u. a.: Überprüfung thermodynamischer Daten

Abb. 3. Funktion $G^{\text{E}}/x_1 \cdot x_2$ für die drei untersuchten Systeme mit deuter. Aminen a) Methylamin/*n*-Hexan, b) Äthylamin/*n*-Butan und c) Äthylamin/ *n*-Hexan

	(a))	(k	
	2-par.	3-par.	2-par.	3-par.
Y1	1,3372	2,0633		- 1,0209
Y2	1,3310 1,9265 1,9406	1,4916 1,4467		-0,6941 -0,6618
Y3		$0,6347 \\ 0,4794$		+ 0,3121 + 0,4003
vv	952 106	$15,75 \\ 5,39$	23,55 11,75	$7,61 \\ 2,45$
m_0	$5,21 \\ 3,44$	$0,681 \\ 0,821$	$0,871 \\ 1,142$	$\begin{array}{c} 0,504 \\ 0,554 \end{array}$
m _Ę	0,015 0,020	0,0035 0,0100	0,011 0,022	0,013 0,019
m_{η}	0,018 0,023	0,0041 0,0109	0,007 0,018	0,008 0,016
m_{ζ}		0,0139 0,0392	·	$0,039 \\ 0,072$
$\lim_{x_2 \to 0} \ln f_2$	1,34317 1,33705	1,49752 1,45267	-0,74883 -0,73619	0,69625 0,66381
$\lim_{x_1\to 0} \ln f_1$	$1,91950 \\ 1,93353$	2,05634 2,04275	-1,10632 -1,08045	- 1,01875 - 0,99067

Tabelle 4. Werte der 6. Näherung für die Systeme Aceton/CS₂ und Aceton/CHCl₃; Bezeichnungen wie in Tab. 1, Versuchstemp. 35,17°. (a) Aceton/CS₂, (b) Aceton/CHCl₃; jeweils 2. Zeile: Werte ber. aus 11 Daten

Die Gewichtskoeffizienten der Unbekannten erhält man aus den Normalgleichungen durch Inversion ihrer Matrix zu

$$Q_{\xi\xi} [al] + Q_{\xi\eta} [bl] + Q_{\xi\zeta} [cl] = \xi$$

$$Q_{\eta\xi} [al] + Q_{\eta\eta} [bl] + Q_{\eta\zeta} [cl] = \eta$$

$$Q_{\zeta\xi} [al] + Q_{\zeta\eta} [bl] + Q_{\zeta\zeta} [cl] = \zeta$$
(12)

als Diagonalelemente der Inversen.

Für die mittleren Fehler der Parameter gilt

$$\mathbf{m}_{0} = \sqrt{\frac{[vv]}{n-r}}, \ m_{\xi} = m_{0}\sqrt{Q_{\xi\xi}}, \ m_{\eta} = m_{0}\sqrt{Q_{\eta\eta}}, \ m_{\zeta} = m_{0}\sqrt{Q_{\zeta\zeta}}$$
(13)
(n = Zahl der Beobachtungen, r.... Zahl der Parameter)

Die dreiparametrige Rechnung wird mit sechs Näherungen, einmal ohne und einmal mit Realgaskorrektur durchgeführt, die zweiparametrige ebenfalls mit sechs Näherungen, doch nur mit Realgaskorrektur. Für das System *n*-Hexan/deut. Methylamin finden sich die Werte in Tab. 1. Diese Tab. enthält in ihrem letzten Abschnitt die natürlichen Logarithmen der Grenzwerte der Aktivitätskoeffizienten lim ln f_2 und lim ln f_1 . Die Unter $x_2 \rightarrow 0$ schiede gegenüber den entsprechenden Werten der RK Derstellung sind

schiede gegenüber den entsprechenden Werten der RK-Darstellung sind gut zu überblicken.

Abb. 4. Fehlerverteilung für die Systeme a) Aceton/CS₂ und b) Aceton/CHCl₃ bei 3- und 2-parametriger Rechnung nach MB

Für die beiden anderen Systeme mit deuterierten Aminen werden in Tab. 2 lediglich die Werte der Parameter Y mit Realgaskorrektur, erhalten durch dreiparametrige Rechnung, angegeben.

Im unteren Teil der Tabelle sind die Werte der Interpolationsfunktionen A(j) und B(j) für glatte Werte von x_2 enthalten, so daß mit deren Hilfe sich die Aktivitätskoeffizienten nach den Gl. (6) errechnen lassen. Jetzt ist jedoch der Summand "Realgaskorrektur" wegzulassen. Im System *n*-Hexan/deut. Methylamin zeigte sich die Fehlerverteilung deutlich von der Temperatur abhängig. Abb. 1 gibt für $t = +20^{\circ}$ C den verbleibenden Fehler $l_i \ [l = P \ (ber.) - P \ (exp.)]$ in % an. Es wurden der Fehlerverlauf bei zwei- und dreiparametriger Rechnung sowie der Fehler bei Verwendung des dreiparametrigen Ansatzes nach *Redlich—Kister* [Konstanten für *RK* wurden aus (3) entnommen] gezeichnet. Es wurde bereits in der 8. Mitt. darauf verwiesen, daß die Frage, wieviel Koeffizienten Av des

Monatshefte für Chemie, Bd. 99/1

RK-Ansatzes zu berechnen sind, um eine brauchbare Approximation zu erhalten, nur schwer allgemein zu beantworten ist. Abb. 1 zeigt, daß mit einem *drei*parametrigen Ansatz das System nicht befriedigend dargestellt werden kann. Die Fehler betragen bis etwa x = 0.5 über 2%. Ebenso ist die

Abb. 5. Freie molare Exzeß-Enthalpie für
a) Aceton/CS₂ und b) Aceton/CS₃. Statt G_2^E bzw.
 G_1^E lese man: $x_2G_2^E$ bzw. $x_1G_1^E$

Darstellung mit einem zweiparametrigen *MB*-Ansatz nicht ausreichend, doch schwanken hier die Fehler nur mehr zwischen — 3 und + 2,5%. Der dreiparametrige *MB*-Ansatz weist im Gebiet stark verdünnter Lösung $(x_{\text{Amin}} < 0,05)$ einen Fehler von 2,8% auf, während er sich in seinem weiteren Verlauf zwischen den Grenzen — 1,1% und + 1,9% hält.

Aus Abb. 2 läßt sich für die Isotherme — 55° desselben Systems entnehmen: Der dreiparametrige RK-Ansatz versagt im Bereich $x_{\text{Amin}} < 0.15$ und weist bei x = 0.567 einen Fehler von 2.2% auf. Der dreiparametrige RK-Ansatz liefert ab x = 0.07 brauchbare Werte, die durchweg unter der Fehlergrenze liegen. Der zweiparametrige MB-Ansatz, der hier nicht wiedergegeben wird, zeigt Fehler bis zu 24%(!). Die Frage nach einem zwei- oder dreiparametrigen MB-Ansatz ist also eindeutig zugunsten des dreiparametrigen Ansatzes entschieden.

Die Systeme *n*-Butan und *n*-Hexan mit deut. Äthylamin lassen sich mit dem dreiparametrigen *MB*-Ansatz über den ganzen Konzentrationsbereich einwandfrei darstellen. Tab. 3 bringt für diese Systeme die Näherungen und Fehler einiger Versuchswerte im stark verdünnten Bereich von insgesamt 26, bzw. 24 Wertepaaren.

Abb. 3 zeigt für die drei Amin-Systeme die mit dem vorliegenden Programm berechneten Werte der freien Exzeß-Enthalpie, dividiert durch $x_1 \cdot x_2$. Die Temperaturabhängigkeit der freien Exzeß-Enthalpie und ihre Bedeutung für die Interpretation der Amin-Systeme ist bereits an anderer Stelle untersucht worden.¹²

Die Systeme Aceton/CS₂ und Aceton/CHCl₃ wurden einerseits mit 11 abgeleiteten glatten Werten, andererseits mit den 37 bzw. 33 Originalwerten von Zawidski durchgerechnet. Tab. 4 bringt die Ergebnisse, Abb. 4 zeigt die Fehlerverteilung bei Rechnung mit den Originalwerten. Es kann aus der Abbildung eindeutig zugunsten der dreiparametrigen Rechnung mit den Originaldaten geschlossen werden.

Abb. 5 zeigt die molare freie Exzeßenthalpie der beiden letztbetrachteten Systeme. Für glatte Werte wurde durch (*) angemerkt, welchen Verlauf die Kurve bei dreiparametriger Rechnung mit 11 Werten nimmt. Die Unterschiede sind zu vernachlässigen.

¹² H. Wolff, A. Höpfner und H.-E. Höppel, Ber. Bunsenges. physik. Chemie 71, 151 (1967).